METIRIO Readhead

The **METIRIO** Readhead is an analog high precision encoder, designed and manufactured to meet the most stringent market requirements for closed-loop nano-positioning. The readhead constitutes the core of the METIRIO encoder, and is encapsulated in a small package, featuring maximum miniaturization, low noise and high bandwidth. It is suited for the deployment in UHV and in conjunction with linear, rotary and convex scales.

Features

- Compact size: 6.6 (L) X 5.1 (W) x 1.7 (H) mm³
- High resolution: < 1 nm
- Low noise: 450 μV_{RMS} @ 500 kHz bandwidth
- Low current consumption: 20 mA
- Operational under UHV conditions: 10⁻¹¹ mbar
- Suitable for PCB soldering

Applications

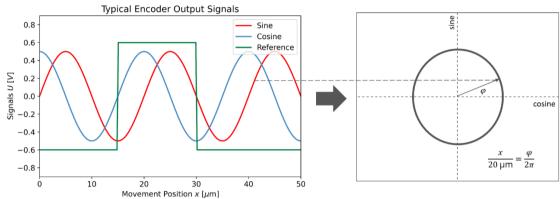
- Rotary encoders
- Linear encoders
- Robots
- Linear motors
- Precision stages
- Galvanometers

Absolute Maximum Ratings

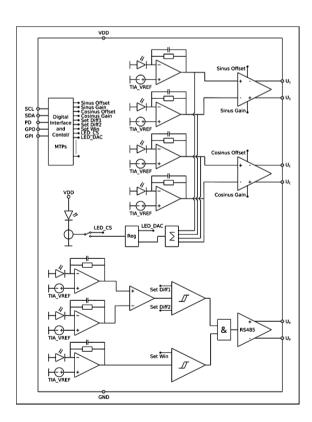
Parameter	Symbol	Condition	Value	Unit
Operating temperature	T_{O}	no dew condensation	0 to +80	°C
Storage temperature	Ts	no dew condensation	-20 to +80	°C
Maximum baking temperature	T_{B}	> 48 hrs.	120	°C
Supply voltage	V_{DD}	to GND	3.0 to 5.5	V
Maximum Power consumption	P_{el}	all outputs terminated	310	mW
ESD susceptibility		HBM (AEC-Q101)	4	kV
Max. radiant output power	$oldsymbol{\phi}_{\sf max}$	short circuit current I _F =1000 mA	< 360	mW
Ambient pressure	р		> 10 ⁻¹¹	mbar

Electrical & Optical Characteristics

Parameter	Symbol	Condition	Value	Unit
Current consumption	I_{DD}	typical	20	mA
Analog output voltage	$U_{sin,cos}$	Sin, Cos	1	V_{PP}
Reference output	U_{Ref}		RS485	Square wave
Integrated noise	U_{RMS}	500 kHz bandwidth	450	μV_{RMS}
Max. bandwidth	$f_{\sf 3dB}$	3 dB cutoff	500	kHz
Central emission wavelength	λ_{pk}		850	nm
Radiant output power	$oldsymbol{\phi}_{e}$	typical	< 45	mW
Compatible scale pitch			20	μm


Scale Conditions

Parameter	Value	Unit
Grating	Reflective amplitude	grating
Pitch	20	μm
Working distance	1.2	mm
Scale types	linear, rotary, cor	ivex

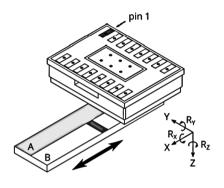

Functional Description

Through an index grating, a built-in LED (850 nm) illuminates a scale with a pitch size of 20 μ m. The reflected diffraction image is projected onto a photodiode array by means of an analyzer grating, residing in front of the detector. As a result of the relative movement between the readhead and the scale, an analog sine/cosine signal with a cycle period of 20 μ m can be induced to determine the displacement and direction of motion. An integrated ASIC is utilized for signal detection and processing, as well as for producing a digital reference pulse to determine the initial position and direction of motion. Two differential analog signals (sine/cosine) are output with 1 V_{pp} – the reference signal is a digital differential pulse supplied via an integral RS 485 interface.

Output Waveform

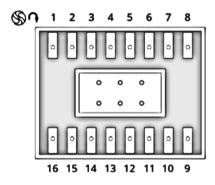
Block Diagram

Adjustment

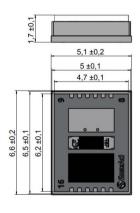

Offset and gain of the sine/cosine, threshold, position, and width of the reference signal, as well as the LED current and brightness can be set either via I2C bus or by applying SmarAct Metrology's **ENCODER** Evaluation **MODULE** and Program. Consult with us for more details.

Alignment

The readhead's optical center is offset from the scale by 1.2 mm in the vertical direction. If using a rotary scale, the scale offset in the horizontal direction needs to be taken into account as well. Optimum alignment may vary due to mounting tolerances, so thorough evaluation is required to adjust appropriate conditions. The glass surface of the device, the frame, and fiducial mark facilitate the entire optical-mechanical alignment process. SmarAct Metrology also offer validated alignment technology and software tools (**ENCODER** EVALUATION **PROGRAM**) that support our customers with achieving fast and individualized installations.


Alignment Tolerances

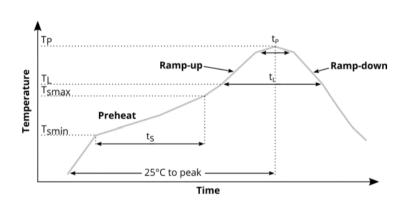
Parameter	Value	Unit
Χ	Direction of motion	
Υ	0 ± 0.5 (centered between A and B)	mm
Working distance Z	1.18± 0.15	mm
Yaw angle (R _Z)	0 ± 1.1	deg
Roll angle (R_X)	0 ± 1.1	deg
Pitch angle (R _Y)	0 ± 2.0	deg


PIN Description

1 2 3 4 U_{cos+} (out) U_{cos-} (out) U_{sin+} (out) U_{sin-} (out) 5 6 7 8 V_{DD} (in) U_{Ref+} (out) U_{Ref-} (out) U_{Ref-} (out) GND	PIN Description				
5 6 7 8					
3 , 3)				
$V_{op}(in)$ $U_{op}(out)$ $U_{op}(out)$ GND					
V _{DD} (III) Okej+ (Odt) Okej-					
9 10 11 12					
SCL (in) SDA (i/o) PD (in) GND					
13 14 15 16					
GPO (out) GPI (in) d.n.c. GND					

Dimensional Outline

Parameter	Specification
Dimensions	$6.6 \times 5.1 \times 1.7 \text{ mm}^3$
Package	flat-no-leads ceramic circuit board
Window	Glass
Soldering pads	Gold
Pad size	$0.9 \times 0.25 \text{ mm}^2$
Pad pitch	0.75 mm
Cable	None
Materials	None magnetic RoHS Compliant Low Outgassing (UHV)
Weight	0,12 g


Mounting Precautions

Thermal performance is directly linked to the printed circuit board (PCB) design and operating environment. Careful attention to the PCB thermal design is required. The junction from the thermal resistance to the ambient air is θ_{IA} = 130 K/W. Measurements have been conducted based on the JEDEC JESD51-2A.

Soldering Precautions

When soldering, ensure there is no foreign matters adhering to the surface of the read-head. After soldering, it's advised that no mechanical stress or strong vibration is applied until the device has reached room temperature.

Profile Feautre	Value
Preheat min. T _{smin}	150 °C
Preheat max. T _{smax}	200 °C
Preheat time t _s	60 s – 120 s
Ramp-up rate T _L to T _p	Max. 3 °C/s
Liquidous Temp. T _L	217 °C
Time t _L above T _L	60 s – 150 s
Peak body Temp. Tp	260 °C
Time t _p within 5°C of peak Temp.	< 30 s
Ramp-down Rate T _p to T _L	6 °C/s

Soldering on PCB

Customized soldering ensures precision and reliability for specific integration requirements. The readhead can be either glued or soldered. For soldering/gluing, it's either directly mounted on a PCB and electrically connected to the substrate's solder pads, or solder-wired. Below example shows how the METIRIO readhead fuses with a flexible circuit board.

Sales partner / Contacts

Germany

Rohdenweg 4

SmarAct Metrology GmbH & Co. KG

26135 Oldenburg Germany T: +49 441 - 800 879 0 Email: metrology@smaract.com

France

SmarAct GmbH

Schuette-Lanz-Strasse 9 26135 Oldenburg Germany

T: +49 441 - 800 879 956 Email: info-fr@smaract.com www.smaract.com

USA

SmarAct Inc.

2140 Shattuck Ave. Suite 302 Berkeley, CA 94704 United States of America

T: +1 415 - 766 9006 Email: info-us@smaract.com www.smaract.com

China

Dynasense Photonics

www.smaract.com

6 Taiping Street Xi Cheng District, Beijing, China

T: +86 10 - 835 038 53 Email: info@dyna-sense.com www.dyna-sense.com

Natsu Precision Tech

Room 515, Floor 5, Building 7, No.18 East Qinghe Anning Zhuang Road, Haidian District Beijing, China

T: +86 18 - 616 715 058 Email: chenye@nanostage.com www.nano-stage.com

Shanghai Kingway Optech Co.Ltd

Room 1212, T1 Building
Zhonggeng Global Creative
Center
Lane 166, Yuhong Road
Minhang District
Shanghai, China
Tel: +86 21 - 548 469 66
Email: sales@kingwayoptech.com
www.kingway-optech.com

Japan

Physix Technology Inc.

Ichikawa-Business-Plaza 4-2-5 Minami-yawata, Ichikawa-shi 272-0023 Chiba Japan

T/F: +81 47 - 370 86 00 Email: info-jp@smaract.com www.physix-tech.com

South Korea SEUM Tronics

801, 1, Gasan digital 1-ro Geumcheon-gu Seoul, 08594, Korea

T: +82 2 - 868 10 02 Email: info-kr@smaract.com www.seumtronics.com

Israel

Trico Israel Ltd.

P.O.Box 6172 46150 Herzeliya Israel

T: +972 9 - 950 60 74 Email: info-il@smaract.com www.trico.co.il SmarAct Metrology GmbH & Co. KG develops sophisticated equipment to serve high accuracy positioning and metrology applications in research and industry within fields such as optics, semiconductors and life sciences. Our broad product portfolio – from miniaturized interferometers and optical encoders for displacement measurements to powerful electrical nanoprobers for the characterization of smallest semiconductor technology nodes – is completed by turnkey scanning microscopes, which can be used in vacuum, cryogenic or other harsh environments.

We maintain the complete production in house for a high level of customization so that we can always provide you the optimal individual or OEM solution. We also offer feasibility studies, measurement services and comprehensive support to accompany you along your projects.

Headquarters

SmarAct GmbH

Schuette-Lanz-Strasse 9 26135 Oldenburg Germany

T: +49 441 – 800 879 0 Email: info-de@smaract.com

www·smaract·com

USA

SmarAct Inc.

2140 Shauttuck Ave. Suite 302 Berkeley, CA 94704 United States of America

T: +1 415 – 766 9006 Email: info-us@smaract.com www.smaract.com