The dynamic behavior of structures can depend strongly on the surrounding medium. This application note deals with the measurement of vibrations in air and in vacuum. In air, the vibrations of a micromechanical structure will be damped, which generally leads to a downshift of the resonance peak and a reduction of its quality factor as compared to the situation in vacuum. For this reason, many MEMS sensors are packaged in vacuum to improve their performance.

The ability of Smaract’s PICO SCALE Vibrometer to work in a variety of environments, including vacuum, opens up new ways for the characterization of micromechanical systems. For example, the effects of production steps that take place in vacuum, such as thin film deposition, can be directly measured. Furthermore, the performance of MEMS that are designed to work in vacuum can be tested at different pressures before they are packaged. In this context, also the capability of the PICO SCALE Vibrometer to measure vibrations through a silicon package with an infrared laser beam should be mentioned, since this allows to measure vibrations of MEMS sensors after they have been packaged.

Here, we show how the vibrational behavior of a micro-cantilever is strongly affected by air damping. For this, we studied the vibrations that are induced by the thermal energy in the system, so in the absence of active actuation of the cantilever. For the experiment, the PICO SCALE Vibrometer (excluding controller, PC and operator) was placed in a vacuum chamber. Figure 1a shows the recorded microscopy images of the cantilever. As expected, their appearance is identical. In order to measure the amplitude spectra, the measurement laser beam was positioned near the free end of the cantilever as indicated in figure 1a. Here, the displacements were measured and Fourier transformed to reveal the amplitude spectra around the resonance frequency (figure 1b). In vacuum, the curve has a much higher quality factor as under ambient conditions in air. In addition, the resonance frequency in air is reduced by about 0.3 kHz.

These results confirm the importance of measuring the dynamic performance of micromechanical structures under the right environmental conditions. Thanks to compact dimensions of the PICO SCALE Vibrometer it can be fitted in most vacuum chambers and electron microscopes.

Methods. The experiments were performed with a standard PICO SCALE Vibrometer placed inside a Vega3 electron microscope (Tescan, Brno, Czech Republic). The MSCT chip (Bruker, Billerica, USA) was fixed on the sample holder using vacuum grease and cantilever A was investigated (manufacturer specifications: resonance frequency 22 kHz, spring constant 0.07 N/m). The amplitude spectra were obtained by averaging 50 FFTs, each converted from a 1 s recording at a sampling frequency of 5 MHz. Due to this long measurement time it cannot be excluded that some extra energy was added to the system by the fraction of the measurement laser light that was adsorbed by the cantilever.

Figure 1. Vibrometry measurements in air and in vacuum. The AFM cantilever was measured in a scanning electron microscope chamber, either at 1.0×10^{-3} mbar (ambient air pressure) and 3.6×10^{-2} mbar (vacuum pressure). First, microscopy images were recorded. (a) Confocal reflection images in air and in vacuum. The dot shows the position of the measurement laser for the recording of the thermal vibrations. (b) The amplitude spectra in air and in vacuum. The curve in vacuum is much sharper and shows a higher resonance frequency as in air.
Sales partner / Contacts

Germany
SmarAct GmbH
Schuette-Lanz-Strasse 9
26135 Oldenburg
Germany

T: +49 441 - 800 879 0
Email: info-de@smaract.com
www.smaract.com

France
SmarAct GmbH
Schuette-Lanz-Strasse 9
26135 Oldenburg
Germany

T: +49 441 - 800 879 956
Email: info-fr@smaract.com
www.smaract.com

USA
SmarAct Inc.
2140 Shattuck Ave. Suite 1103
Berkeley, CA 94704
United States of America

T: +1 415 - 766 9006
Email: info-us@smaract.com
www.smaract.com

China
Dynasense Photonics
6 Taiping Street
Xi Cheng District,
Beijing, China

T: +86 10 - 835 038 53
Email: info@dyana-sense.com
www.dyana-sense.com

Natsu Precision Tech
Room 515, Floor 5, Building 7,
No.18 East Qinghe Anning
Zhuang Road,
Haidian District
Beijing, China

T: +86 18 - 616 715 058
Email: cheny@nano-stage.com
www.nano-stage.com

Japan
Physix Technology Inc.
Ichikawa-Business-Plaza
4-2-5 Minami-yawata,
Ichikawa-shi
272-0023 Chiba
Japan

T/F: +81 47 - 370 86 00
Email: info-jp@smaract.com
www.physex-tech.com

South Korea
SEUM Tronics
801, 1, Gasan digital 1-ro
Geumcheon-gu
Seoul, 08594,
Korea

T: +82 2 - 868 10 02
Email: info-kr@smaract.com
www.seumtronics.com

Israel
Trico Israel Ltd.
P.O.Box 6172
46150 Herzeliya
Israel

T: +972 9 - 950 60 74
Email: info-il@smaract.com
www.trico.co.il